Spatial confinement of laser light in active random media

نویسندگان

  • Cao
  • Xu
  • Zhang
  • Chang
  • Ho
  • Seelig
  • Liu
چکیده

We have observed spatial confinement of laser light in micrometer-sized random media. The optical confinement is attributed to the disorder-induced scattering and interference. Our experimental data suggest that coherent amplification of the scattered light enhances the interference effect and helps the spatial confinement. Using the finite-difference time-domain method, we simulate lasing with coherent feedback in the active random medium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lasing optical cavities based on macroscopic scattering elements

Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for...

متن کامل

Lasing in random media

A random laser is a non-conventional laser whose feedback mechanism is based on disorder-induced light scattering. Depending on whether the feedback supplied by scattering is intensity feedback or amplitude feedback, random lasers are classified into two categories: random lasers with incoherent feedback and random lasers with coherent feedback. A brief survey of random lasers with incoherent f...

متن کامل

Spatial threshold in amplifying random media.

We study experimentally as well as numerically the transport and generation of light in multiple scattering media with optical gain. By imaging the spatial distribution of light escaping from the side of the sample, the propagation depth is analyzed. Far below and far above random laser threshold, the spatial profile of emission light is independent of pump intensity, while around threshold, th...

متن کامل

Self-Optimization of Optical Confinement and Lasing Action in Disordered Photonic Crystals

Light scattering is usually regarded detrimental to optical confinement in conventional lasers. In contrast, in random lasers, the confinement is caused by disorder-induced scattering. In strongly scattering media, the lasing is defined by the high-quality modes of the passive system. Thus, by incorporating and optimizing a degree of order, one can dramatically reduce the threshold of a random ...

متن کامل

Engineering of light confinement in strongly scattering disordered media.

Disordered photonic materials can diffuse and localize light through random multiple scattering, offering opportunities to study mesoscopic phenomena, control light-matter interactions, and provide new strategies for photonic applications. Light transport in such media is governed by photonic modes characterized by resonances with finite spectral width and spatial extent. Considerable steps hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 84 24  شماره 

صفحات  -

تاریخ انتشار 2000